
 
 
 
 
 
 
 
 
 

Program #1 
BCS Ranking Program 

 
 
 
 
 

Nathan Balon 
CIS 350 

Data Structures and Algorithms 
1/18/2005 

 



Ranking Program 1 

Description of the Problem 
 
There is a problem with the rankings of teams in college football.  The BCS currently has 
a ranking system but it has been found to be inadequate.  A new system is to be 
developed that uses the bookies of America, to rank the top college football teams.  Each 
bookie will give there rankings of what they feel are the top 6 teams in the country.   
 
A program needs to be developed to read in the  ranking from the bookies of the top six 
teams and then to determine what the median ranking for the teams are based on the input 
given.  The median ranking then will be used establish the national ranking of top teams.  
The program will accept a number of rankings given by bookies as input.  Then the 
program will compute the median ranking and display it to the user. 
 

Input Specification 
 
The program will read multiple sets of input.  In a set the first input that will be given to 
the program is the number of rankings n.  The variable n will be no larger than 10,000.  
After the number of rankings is established the rankings will be read into the program.  
The sets of rankings will be a string of six characters, consisting of the characters {A, B, 
C, D, E, F} with none being repeated and no spaces in between the characters.  The 
strings read in will have different permutations of these characters.  The program will 
continue to read the strings of rankings into the program until it reads all rankings of the 
number n.  After a set of rankings is read in the program attempts to read in another set of 
rankings.  If n equals 0 is found when reading in the number of rankings, then the end of 
input is found and the program terminates. 
 
An example of the input that is used for the program is given in figure 1. 
 

4 
ABDCEF 
BACDEF 
CADBFE 
ABCDEF 
0 
 
Figure 1  
 

Output Specification 
 
After the program has calculated the median rank from the set of ranking it was given as 
input the median rank will be displayed to the user.  If there is more than one median 
ranking with the same value, then the ranking that comes first alphabetically will be 
displayed to the user.  The output of the program will be a string in the form “ranking 
is the median ranking with value value.”  In this case ranking and 
value with be replaced with the correct output from the program.  Ranking will be the 
correct ranking and value will be the value of the ranking.  The program will continue 
to display the median ranking for each set of input rankings given by the user. 
 
An example of the output that could be displayed by the program is given in figure 2. 



Ranking Program 2 

 
ABDCEF is the median ranking with a value of 4. 
 
Figure 2 

 
Data structure Implementation and Discussion 

 
The data structure Ranking is the data structure that is used by the program to 
determine the median ranking from a set of input rankings.  Ranking uses a vector to 
store a set of rankings that were given as input to the program.  At first I was going to use 
a pointer was used to avoid copying all of the values in the vector when a Ranking 
object is created.  In the end, I decided against this option.  While it would have improved 
the performance of the program it is possible that the vector that is pointed to by the 
object could be deleted, which would cause unexpected results.  Because of this I changed 
the implementation of the class to pass a vector by value when creating an object.  The 
class contains the data member’s _inputRankings, _medianRanking, 
_rankValue and _intialPermutation. First, _inputRanking is a vector 
of string used to store all the ranking in a set that was given to the program as input.  
Second, _medianRanking contains a string which is to store the median ranking. 
Third, _rankValue contains the value of the rank.  Last, _intialPermutation, 
contains a string that is to be used for the initial permutation that is used to calculate a 
median ranking.   
 
The class Ranking has one constructor.  To use the constructor the user supplies a 
vector of strings which contain the ranking which were entered as input.  The class also 
contains a destructor that is used to deallocate memory that was allocated for the vector in 
the constructor. 
 
The Ranking class has five member functions.  The functions are 
createPermutationString, distanceBetweenStrings, 
calcCandidateRank, calcRank, and displayMedianRanking.   To Begin, 
createPermutationString is called by the constructor when a Ranking object is 
created.   Initial I created a constant string to store the value of the intial permutation the 
problem with that approach is that it did not allow the program to be run on set of input 
that varied in length.  Next, distanceBetweenStrings is a private member 
function that is used to calculate the distance between two strings.  The function was 
made private because it does not change or display any state information of an object and 
it is used just to process the difference between two strings.  The member function 
calcCandidateRank uses distanceBetweenStrings to determine the distance 
between to strings when calculating the median rank.  Also, calcCandidateRank is 
another private function which used to compute the sum of the distance from candidate 
ranking to all of the voted rankings.  The next member function is calcRank which is 
used to determine which candidate ranking is the median ranking for the set of voted 
rankings.  Fourth, displayMedianRanking sends median ranking to standard output.  
These are the member functions used by the class Ranking. 
 
The main of the program uses two global functions getNumberOfRankings and 
getInputRankings.  These two functions are used to get the input of the program 
from the user.  The function getNumberOfRankings reads in the number of rankings 



Ranking Program 3 

that are contained in a set of ranks which is to have it median ranking calculated.  Next, 
the function getInputRankings reads in a number of strings containing the 
rankings.  The number of strings which are read in is equal to the value returned from the 
function getNumberOfRankings. After a string of rankings is read in it is added to a 
vector which is returned from the function.  These two functions were not necessary to 
have it would have been possible to have implemented the functionality of these functions 
in main but it makes the program easier to read by creating separate functions. 
 
The class that was created to hold the rankings could add some additional methods to give 
the user of the class more functionality.  Methods could be created to add new rankings to 
an object.  Also, the functionality to remove a ranking from an object could also be added.  
There are a few other things that could be added to class to improve its functionality.  As 
it stands the class can not be used to be stored in STL container since it doesn’t 
implement a copy constructor, the assignment operator and overload the less than 
operator.  These features were left out of the program since they wouldn’t have any effect 
on the assignment at hand.  For this class to be used as a general purpose class, these 
additional features could be added. 
 
It would have also been possible to program the assignment using procedural 
programming such as how a c program would be written.  For this program there isn’t any 
interaction with other objects.  The one benefit of creating a class to store the data 
structure is it provides encapsulation of the data.   Also, in the future it would be easy to 
provide additional functionality to this class. 
 
The diagram below shown below in figure 3 contains the class diagram of Ranking. 
 
 

 
 

Figure 3 Ranking class diagram 



Ranking Program 4 

 
Algorithm Descriptions 

 
The algorithms for the program will be described using UML and specifically activity 
diagrams will be used.  A few of the more trivial functions were left out of the algorithm 
description because the analysis of there algorithms would add much to the analysis of the 
program.  One example of a function that was left out is displayMedianRanking, 
because it simply sends a string to standard output. 
 
 

 
 

Figure 4 main 
 



Ranking Program 5 

 
 

Figure 5 getInputRankings 



Ranking Program 6 

 
 

Figure 6 distanceBetweenStrings 



Ranking Program 7 

 
 

 

 
Figure 7 calCandidateRank 

 
 
 
 
 



Ranking Program 8 

 
Figure 8 calcRank



Ranking Program 9 

 
Analysis 

 
1) How many rankings are possible? 
 

P(6,6) =  6*5*4*3*2*1 = 720 
 
So there are 720 different permutations that are possible. 
 

2) If the computer did 1/sec how long? 
 

The maximum number of permutations that is possible is 10,000.  So to determine the 
worst case run time for the program 10,000 permutations should be inputted into the 
program.   If the computer could only calculate one the value of permutation per 
second, it would take 10,000 seconds to run the program.  Which would take 2.77 
hours to run the program in the worst case that all 10,000 sets of permutations were 
supplied?  

 
3) Given a 1 gig machine what is the largest problem that you can solve? 
 

A 1 gig machine is able to execute 1,000,000,000 instructions per second.  It is 
difficult to give an exact amount of time that program would run in.  In modern 
operating systems a number of processes are switched back and forth from, so it is 
unlikely that a process will get to run from start to finish with out being interrupted.  
Also, the amount of time need for IO to read in a file from the disk will vary but it 
shouldn't take that long to read in 10,000 short strings that contain the rankings.   
 
Because of the mentioned problems, the analyses of the runtime will then just focus on 
the key operations that are used by the program.  Computing the ranks is the most 
intensive part of the program the number of operations required to compute one 
ranking is (n-1)n/2.  The number n in the case of the program will be six since the 
strings of six characters are read into the program and the maximum number of 
ranking that are read in is 10,000.  Computing the rank will take 15 * 10,000 =  
150,000 operations.   If each operation it was estimated that 100 clock cycles were 
necessary the program would take 150,000 * 100 = 15,000,000 clock cycles. It would 
take approximately .015 seconds to calculate the median ranking from the input given.  
 
After the median rank has been calculated the rank must be displayed to the user.  One 
problem is that it is possible that there is more than one ranking that has the same 
median rank.  One solution to this problem is to use a multi-map from the standard 
template library.  When the value of the rank is calculated in the previous step it could 
be added to a multi-map.  The key would be the value of the ranking and the value 
would be the string that was read in.  The benefit of using a map is that the internal 
structure of the map is a tree to it allows for the quick retrieval of elements.  After the 
median was calculated, the value that matches could be retrieved from the map in 
logarithmic amount of time.  It is possible that there will be 720 keys so in the worst 
case to remove an element for the map would take 10 operations of traversing the tree.  
Also, some time will have to be accounted for the construction of the multi-map. 



Ranking Program 10 

 
The described problem should easily be able to be run on a 1 gig machine.  It should 
take less than a second to compute the median ranking and then to display it to the 
user. 
 
If the number of letters used for the ranking was increased it would also have an 
impact on the performance of the program.  The letter m will represent the number of 
teams that are given to be ranked.  In order to determine the median ranking all 
permutations of the letters of m would have to be calculated.  For instance, if the 
number of teams to be ranked was increased to 10, then 10! permutations would need 
to be compared to determine the median value.  When m equals 10 teams to be ranked 
then 3,628,800 permutations would need to be compared.  As the number m increases 
the number of permutations that needed to be calculated dramatically increases.   The 
largest problem that could reasonably be solved on a one gig machine is 13.  The 
teams could be ranked, which would cause 13! permutations to be calculated.  If it was 
very important that 14 teams were used it would be possible but the user would have 
to wait hours for the median ranking to be calculated.  For all practical purpose 13 is 
the largest number of teams that could be ranked.  If more than 13 teams had to be 
ranked another method would need to be used to calculate the rankings.   

 
 

Runtime and Storage Analysis 
 

The worst case runtime and storage is used to determine the performance of the ranking 
program.  The worst case runtime gives an upper bound on the amount of time needed to 
run the program.  The worst case storage analysis gives on upper bound on the amount of 
memory that that will be needed to store the program.   
 
 For the ranking program the performance of the program depends on the length of the 
string of ranking and the number of rankings used to compute the median value.  The 
variable n will represent the number of ranking in the input set of rankings.    The variable 
m will represent the number of characters in a ranking string.  A third variable will be 
introduced o, which represents the number of set of input given to the program.  The 
tables below give the worst case runtime and storage for the program. 

 
 

Worst Case Runtime 
Function Worst Case Runtime 

Ranking O(1) 

~Ranking O(1) 

getNumberOfRankings O(1) 

getInputRankings O(n * m ) 



Ranking Program 11 

Worst Case Runtime 
createPermutationString O(m) 

distanceBetweenStrings O(m^3) 

calcCandidateRank O(m^3 * n) 

calcRank O(m! * m^3 * n) 

displayRank O(1) 

main O(m! * m^3 * n * o)         

 
Table 1 Worst case runtime 

 
 

Worst Case Storage 
Function Worst Case Storage 

Ranking O(n*m) 

~Ranking O(1) 

getNumberOfRankings O(1) 

getInputRankings O(n * m) 

createPermutationString O(1) 

distanceBetweenStrings O(1) 

calcCandidateRank O(1) 

calcRank O(1) 

displayRank O(1) 

main O(n*m) 

 Table 2 Worst case storage 
 
 

Test Plan 
 

A number of sets of input for the program will be created to test that the program is 
working correctly.  
 
The input sets will be similar to the one given in the program description.  All the values 



Ranking Program 12 

for the sets of rankings will be determined before the tests are run.   The test will use a 
different variation of data to determine if the program is running correctly.  If any 
problems arise and the program does not output the correct values for the sample input the 
program will be debugged to correct the problem. 
 
The table below contains the input sets that will be used to test the program.  The column 
input gives the set of input that is to be entered into the program.  Expected output 
column gives the results that are expected when the test is run.  Reason explains why the 
set of input was chosen to test the program.   
 
 
Test # Input Expected Output Reason 
1 4 

ABDCEF 
BACDEF 
ABCEDF 
ACBDEF 

Median rank = ABCDEF 
Rank value = 4 

To test the sample case given by the 
Instructor. 

2 2 
ABC 
ACB 

Median rank = ABC 
Rank value = 1 

To test the program when a different size 
of input is used, instead of strings of the 
length 6. 

3 2 
ABC 
CBA 

Median rank = ABC 
Rank value = 3 

To test two strings that can easily have 
there values calculated. 

4 4 
ABC 
ABC 
CBA 
CBA 

Median rank = ABC 
Rank value = 6 

To use the previous test and to test that 
rank value changes correctly, when more 
strings were entered with the intension of 
change the rank value.  

5 5 
ABC 
ABC 
CBA 
CBA 
BCA 

Median rank = BCA 
Rank value = 6 

To use the previous test and add another 
ranking so that the median rank will 
change. 

6 3 
ABCDEF 
ACBDEF 
ACBDEF 

Median rank = ACBDEF 
Rank value = 1 

To test that the median ranking will 
change. 

7 3 
FDECAB 
FDECAB 
FDECAB 

Median rank = FDECAB 
Rank value = 0 

To test that the program works correctly 
when given all equal strings. 

8 ACBEFD 
ABCDEF 
ACBDFE 

Median rank = ACBDEF 
Rank value = 4 

To test another set of rankings similar to 
those given by the instructor. 

9 ABCDEF 
ABC 

The program should display 
and error and terminate 

To test that strings of different length are 
not compared. 

10 4 
ABDCEF 
BACDEF 
ABCEDF 
acbdef 

Median rank = ABCDEF 
Rank value = 4 

To check that the program ignores the case 
of the letters when calculating the median 
rank. 

 
Table 3 Test plan 

  



Ranking Program 13 

Test Results 
 

The tests given in the test plan were run to determine if the program was operating 
correctly.  The table below gives the results of the test.  All of the tests that were created 
in the test plan produced the correct output. 
 
 
Test # Input Expected Output Test Results 
1 4 

ABDCEF 
BACDEF 
ABCEDF 
ACBDEF 

Median rank = ABCDEF 
Rank value = 4 

Median rank = ABCDEF 
Rank value = 4 

2 2 
ABC 
ACB 

Median rank = ABC 
Rank value = 1 

Median rank = ABC 
Rank value = 1 

3 2 
ABC 
CBA 

Median rank = ABC 
Rank value = 3 

Median rank = ABC 
Rank value = 3 

4 4 
ABC 
ABC 
CBA 
CBA 

Median rank = ABC 
Rank value = 6 

Median rank = ABC 
Rank value = 6 

5 5 
ABC 
ABC 
CBA 
CBA 
BCA 

Median rank = BCA 
Rank value = 6 

Median rank = BCA 
Rank value = 6 

6 3 
ABCDEF 
ACBDEF 
ACBDEF 

Median rank = ACBDEF 
Rank value = 1 

Median rank = ACBDEF 
Rank value = 1 

7 3 
FDECAB 
FDECAB 
FDECAB 

Median rank = FDECAB 
Rank value = 0 

Median rank = FDECAB 
Rank value = 0 

8 ACBEFD 
ABCDEF 
ACBDFE 

Median rank = ACBDEF 
Rank value = 4 

Median rank = ACBDEF 
Rank value = 4 

9 4 
ABDCEF 
BACDEF 
ABCEDF 
acbdef 

Median rank = ABCDEF 
Rank value = 4 

Median rank = ABCDEF 
Rank value = 4 

10 ABCDEF 
ABC 

The program should display an error 
and terminate 

The program displayed an error and 
then terminated 

 
Table 4 Test results 



Ranking Program 14 

 
Sample Runs 

 
4 
ABDCEF 
BACDEF 
ABCEDF 
ACBDEF 
ABCDEF is the median ranking with a value of 4 
2 
ABC 
ACB 
ABC is the median ranking with a value of 1 
2 
ABC 
CBA 
ABC is the median ranking with a value of 3 
4 
ABC 
ABC 
CBA 
CBA 
ABC is the median ranking with a value of 6 
5 
ABC 
ABC 
CBA 
CBA 
BCA 
BCA is the median ranking with a value of 6 
3 
ABCDEF 
ACBDEF 
ACBDEF 
ACBDEF is the median ranking with a value of 1 
3 
FDECAB 
FDECAB 
FDECAB 
FDECAB is the median ranking with a value of 0 
3 
ACBEFD 
ABCDEF 
ACBDFE 
ACBDEF is the median ranking with a value of 4 
4 
ABDCEF 
BACDEF 
ABCEDF 
acbdef 
ABCDEF is the median ranking with a value of 4 
2 
ABCDEF 
ABC 
All strings must have the same length 
Press any key to continue . . . 
 
 
 
 


