
CIS 350 Program 3 Fall 2005IS 350 Program 3 Fall 2005

 Min CutMin Cut

Due: March 29nd

Purpose: Data Structure Design

You may work in teams of 1 – 2 members at no deduction.

Problem: Given a graph G , partition the vertices of the G in 2 equal sized subsets, so as

to minimize the total number of edges cut.

Applications:

One important practical example of this problem is placing the components of an
electronic circuit onto printed circuit boards so as to minimize the number of connection
between boards. The components are the vertices of the graph, and the circuit
connections are the edges. There is a maximum number of components which may be
placed on any board. Since connections between boards have a high cost compared to
connections within a board, the object is to minimize the number of interconnections
between boards.
The partition problem also arises naturally in an attempt to improve the paging properties
of programs for use in computers with paged memory organization. A program (at least
statically) can be thought of as a set of connected entities. The vertices might be
subroutines or procedure blocks or single instruction and data items depending on view
point and the level of detail required. The connections between the vertices might
represent possible flow or transfer of control or references from on entity to another. The
problem is to assign the object to “pages” of a given size so as to minimize the number of
references between objects which lie on different pages.
A final example might be the problem of a compiler of a multi-CPU computer, where the
vertices are sections of code which are done sequentially and the edges represent order
dependence between sections. The fewer edges cut, the fewer times the CPUs have to
synchronize with each other.

Specifics:

Your graph will contain no loops but may have parallel edges. Graphs will be generated
by random with the maximum degree of a vertex equal to the square root of the number
of vertices. The number of vertices will always be even. The cost of your cut is the
number of edges that go from one set to the other set.

1 1

Input

The program will input the name of a graph file. The graph file will have the number of

vertices n on the first line. The rest of the file will consist of n lines. The ith line will

begin with the degree of vertex i followed by the vertices that are adjacent to vertex i.

Note that if i is adjacent to j, then j is adjacent to i . All numbers are separated by blanks.

Output

The output will be the screen with the cost (number of edges cut the vertex numbers)
and one set (separated by spaces) you put in 1 set into a file.

Input Graph file format:

#vertices
degreeOfVertex 1 vertices connected to vertex 1 (separated by a blank)
degree if vertex 2 vertices connected to vertex 2 (separated by a blank)
:

Example Input Graph file

6
3 2 6 5
4 4 4 1 3
2 2 5
2 2 2
3 1 3 6
2 1 5

Corresponding Screen Output

The min cost is 2 with the cut 1 5 6

Required Algorithm

Put the first n/2 vertices (1 .. n/2)in one set and the rest of the vertices (n/2+1 .. n) in the
other set. For each vertex compute the inDegree (the number of edges that connect to
vertices in the same set) and the outDegree (the number of edges that connect to vertices
in the other set). Swap the vertices in each set with the largest (outDegree – inDegree),
updating the vertices adjacent to the swapped vertices. In case of ties use numerical order.
No longer consider those vertices.
Continue until at least one set of vertices does not have vertices positive outDegree-
InDegree.
For example in the above
If we start with the sets {1, 2, 3} and {4, 5, 6}

1

2 5

6
3

4

vertex inDegree outDegree outDegree - inDegree

1 1 2 1

2 1 1 0

3 2 2 0

4 0 2 2

5 1 2 1

6 1 1 0

So here we begin by swapping vertex 4 and vertex 1
So the sets become {2, 3, 4} and {1, 5, 6}

vertex inDegree outDegree outDegree - inDegree

1 2 1 -1 LOCKED

2 1 1 0

3 3 1 -1

4 2 0 -2 LOCKED

5 2 1 -1

6 2 0 -2

Now there are no more productive vertices to swap so we are done.

Grading:
Grading (what to turn in)

What
_ indicates program/other is memo

Points Due Tuesday

March 29th

External Documentation 10

Your Name 1

Description of the problem 2
Input Specification 1

Output Specification 1
Algorithm Description UML 5

Data Structure 20

main data structure “structure” 1

member functions / functions
 pre/post conditions for each

4

Design of Data Structure
 Time and Space Efficiency and
discussion and discussion of
implementation

15

Analysis 15

What is the largest graph you can
process in a reasonable amount of
time. (analysis should be based
on the # of vertices and the # of
edges)

2

Worst case time analysis for each
function. (analysis should be
based on the # of vertices and the
of edges)

4

Worst case space analysis for
each function(analysis should be
based on the # of vertices and the
of edges)

4

Test Plan 4

Sample Runs 1

Program Listing Style 15

Your Name 1

Description of the problem 2

Variable Names 3

Data Dictionary 2

Pre/post conditions 3

Length of functions 2

Use of white space 2

Functionality 40

Main 10

Inputs File Correctly 5

Outputs Correctly 5

Computes Correct Cut 20

