
Homework 1 – Intro to OO
Due: Sep. 28, 2004

1- Consider a university campus with the following community: Staff, Faculty and
Students. Staff includes full-time and part-time employees. Faculty can be
Adjunct or Tenure-track faculty. And students can be Undergraduate or Graduate.
Graduate students can further be Masters or PhD, and Undergraduate students can
be in their Junior or senior. Staff and Faculty are employees of the university, and,
along with students, form the “people” in campus.
All employees and students of the university have their information stored in a
Directory, that is used to view the information of different members of the campus.
The search for an individual can be done by their name or ID. Once a member is
located, all their information (except for confidential info, such as SSN) is
displayed.

The university also has different units, such as the library and all the academic
departments, such as CIS, Education, Science, etc., the Human Resources and
Administration buildings.

Every member of the campus is affiliated to one unit, i.e., their office location or
the department a student is enrolled in.

Your task is to model a university system based on the above information. You
classes include: People, Units, Directory, Faculty, Staff, Students, Employee,
Library, HR, Administration, Registrar, etc.. These are some of the issues you
should address:

a) Which classes are abstract classes?
b) What type of abstractions will you use to model this problem? Identify

where “is-a”, “has-a”, “part-of”, etc.. are used. Illustrate inheritance
through an inheritance tree.

c) Identify the attributes and methods of each class
d) When a student or employee is located in the directory, the information

displayed always has their name and location, for example. Illustrate how
one method called describe or toString can be invoked to display the info
of all types of objects.

e) How are the constructors defined? What do they initialize?
f) How is a new employee added to the directory – i.e., what method is

required and where should it be located?
g) What type(s) of inheritance is used in your solution? Does it allow

subtyping? Give examples.
h) Would it be appropriate/efficient/recommended to have Directory as an

interface or abstract class? Why? What about People?
i) Illustrate three different abstraction levels of your system.

2- Insert something at “insert here” in the following C++ code:
 #include <iostream.h>

 // insert here
 main()
 {
 question2 q2;
 cout << “Hello, world\n”;
 delete q2;
 }

 so that it produces the output:
 Initialize
 Hello, world
 Clean up

 Do NOT modify main() in any way.

3- Given the following C# code:

class Animal {
 public virtual void WhoAreYou() { Console.WriteLine(“Iam an
animal”);}
}

class Dog: Animal {
 public override void WhoAreYou(){Console.WriteLine(“I am a dog”); }

 }

 Add a Cat and Cow subclasses to the Animal class. Each subclass should implement
a method Likes(string food), which returns true if the animal likes the food that was
passed as a parameter. Each animal should also have a method Speak(), which returns
a string with the sound that is produced by this animal (e.g., “woof” for Dog). An
animal farm should then be usable as follows:

 foreach (Animal a in farm) // where fram is an array: Animal[] farm
 if (a.likes(“fish”)) a.Speak(); // this shoud return “woof” or “moo” or a
message stating that the given animal does not like the food passed as parameter.

The array farm can be initialized as:

 static Animal[] farm = { new Cow(), new Dog(), new Cat(), new Dog()};

You should also have a name method that will return the name of the animal. For
example, in the Dog class, you would have:

 public string Name { get {return “dog”;}) // using property

Since all dog, cow and cat classes inherit from Animal, they will all override the
methods from Animal. Thus, all the methods in animal will be abstract, i.e., without
any implementation.

4- Define a class “parent” so that the lines of code below are either okay, or give errors, as described
by the comments:

class child: public parent
{
public:
 play()
 { f(); // should be okay
 g(); // should be okay
 h(); // should give error
 }
};

void another(void)
{
 parent trap;
 trap.f(); // should be okay
 trap.g(); // should give error
 trap.h(); // should give error
}

How would a C++ code differ from Java in this? What about C#?

